Second and Delaware, Kansas City, MO

PASSIVE BUILDING STANDARDS AND RECENT POLICY DEVELOPMENTS

FUTURE WORLDWIDE TRANSITION

PHIUS+ PROJECTS NATIONWIDE

70+ MULTIFAMILY SUBMITTED, PRE-CERTIFIED, CERTIFIED

SITE EUIS OF 10-25 kBTU/ft².yr ~20-50% better than DOE's Zero Energy Home Program

~350+ PROJECTS IN NORTH AMERICA

PASSIVE HOUSE US DATABASE

Source: www.phius.org

NY STATE AND CITY SQFT OCTOBER 2016 PHIUS+ PROJECTS

PHI AND PHIUS+ TRENDS IN NA: CERTIFICATIONS BY END OF 2016

Year

© 2017 PHIUS

PHIUS+ TRENDS FOR 2017

Source: www.phius.org

95% of total certified and pre-certified passive building construction (SQFT) in NA

© 2017 PHIUS

WHOLE BUILDING ENERGY BALANCE

Demands, Peaks, Site & Primary Energy

TERMINOLOGY

Annual Demand [kBTU/yr.ft²]: Space conditioning energy consumed over the course of the year, delivered by the equipment to the space.

Peak Load [BTU/hr.ft²]: Space conditioning requirement during the peak climate conditions (average over the worst 24 hours). Determines the size of the mechanical system.

Site Energy [kWh/person.yr] OR [kBTU/yr.ft²]: Total energy consumed over the course of the year, including space conditioning, hot water, plug loads, lighting, appliances, systems, etc. (Excludes electrical vehicle charging energy, and lighting energy specific to vehicle parking areas) *No requirement for PHIUS+ Certification

Source (Primary) Energy [kWh/person.yr] OR [kBTU/yr.ft²]:

Site energy as described above, multiplied by the source/primary energy factor for the specific fuel type used.

Ex: Electricity has a PE factor of 3.16 kWh/kWh (generation at the source vs use on site)

EUROPEAN

PASSIVHAUS CRITERIA

Primary Energy	kBTU/ft²/yr	38
Airtightness	ACH ₅₀	0.6
Annual Heat Demand Annual Cooling Demand	kBTU/ft ² /yr	4.75 (+ allowance for latent)
Peak Heat Load Peak Cooling Load	BTU/ft ² .hr	3.14 2.54
Ventilation	% efficiency W/cfm	75% ≤ 0.76
Thermal En∨elope	hr. tt ⁼ F/BTU BTU/hr. ft ² °F	≥ K-36.3 ≤ U-0.026
Thermal Bridge Free	BTU/ hr. ft °F	$\Psi \leq 0.006$
Windows Installed	BTU/hr. ft ² °F	Uw-install≤0.15
SHGC	%	≈ 0.50 - 0.55

PHIUS+2015: CLIMATE SPECIFIC DESIGN

PHIUS+ 2015 PASSIVE BUILDING CRITERIA

Primary Energy	kBTU/ft ² /yr	(Bedrooms+1 * (6200 kWh *3.412 kBTU/kWh))/iCFA	
Airtightness	cfm/ft ²	0.05 cfm/gross ft ² shell @ 50 pa	
Annual Heat Demand	kBTU/ft ² /yr	1.0 - 12.0 1.0 - 21.4	
Peak Heat Load Peak Cooling Load	BTU/ft ² .hr	0.8 - 5.4	
	% efficiency	53% - 95%	
Ventilation	W/cfm	0.27 - 2.23	
The second Free values of	hr. ft ² °F/BTU	≈ R-25 - R-80	
i nermai Envelope	BTU/hr. ft ² °F	≈ U-0.04 - U-0.0125	
Thermal Bridge Free	BTU/ hr. ft °F	Ψ≤0.006	
Windows Installed	BTU/hr.ft ² °F	Uw-install 0.41 - 0.08	

SHGC

%

≈ 0.27 - 0.61

PHIUS+ 2015 COMMERCIAL PASSIVE BUILDING CRITERIA – SAME EXCEPT SOURCE ENERGY CRITERION: CHANGE TO PER AREA+PROCESS LOAD SPECIFIC CRITERION IF APPLICABLE

Primary Energy	kBTU/ft²/yr	38
Airtightness	cfm/ft ²	0.05 cfm/gross ft ² shell @ 50 pa 0.08 cfm/gross ft ² shell @ 75 pa
Annual Heat Demand Annual Cooling Demand	kBTU/ft ² /yr	1.0 - 12.0 1.0 - 21.4
Peak Heat Load Peak Cooling Load	BTU/ft ² .hr	0.8 - 5.4 1.8 - 8.9

Ventilation	% efficiency	53% - 95%
vennianon	W/cfm	0.27 - 2.23
Thormal Enviolopo	hr.ft²ºF/BTU	≈ R-25 - R-80
merniai crivelope	BTU/hr.ft ² °F	≈ U-0.04 - U-0.0125
Thermal Bridge Free	BTU/ hr. ft °F	$\Psi \leq 0.006$
Windows Installed	BTU/hr.ft ² °F	Uw-install 0.41 - 0.08
SHGC	%	≈ 0.27 - 0.61

METHODOLOGY

Climate Specific & Cost Optimal Standards

Developed by US Industry

NREL BEopt optimizes upgrade package by climate

Standards defined as cost optimal/competitive sweetspot between conservation and generation **on the path to zero**

NEW STANDARDS IDENTIFY US ECONOMIC OPTIMUM TAKING PV COST INTO ACCOUNT

EXAMPLE DASHBOARD CALCULATOR

CLIMATE SPECIFIC METRICS

PASSIVE STANDARDS IN VARYING CLIMATES

← Houston

ТΧ

ASHRAE 2013 & Global Solar Radiation Location

P.0----0

DW Hooks

Zone

2A

Annual heating demand kBtu/sf-iCFA.yr

2.1

Annual cooling demand kBtu/sf-iCFA.yr 13.3

Peak heating load Btu/sf-iCFA.h

3

Peak cooling load Btu/sf-iCFA.h

6

Manual J Peak cooling load Btu/sf-iCFA.h

LINACOA DUR

8.6

CAUSECIENCIAL

New York City

NY

ASHRAE 2013 & Global Solar Radiation Location

(La Guardia)

Zone

4A

Annual heating demand kBtu/sf-iCFA.yr 4.3

Annual cooling demand kBtu/sf-iCFA.yr

4.9

Peak heating load Btu/sf-iCFA.h

3.9

Peak cooling load Btu/sf-iCFA.h

4.5

Manual J Peak cooling load Btu/sf-iCFA.h

6.5

PERFORMANCE CRITERIA DIFFERENCES

Annual Demand, Peak, Source & Air-tightness

PHI CERTIFICATION – does not require US industry standards

- One annual demand target for space conditioning for all climates with an additional allowance for dehumidification based on climate
- Targets not cost-optimized by location
- No mandatory climate specific peak load target to assure thermal comfort
- Source energy target per square foot for residential and commercial & PER based on German conversion factors
- Air-tightness measured relative to building volume
- Standard applied to residential and commercial, separate & less stringent standard for retrofit projects

PHIUS+2015 – requires US industry standards (DOE ZERH, ES, Indoor AIR Plus)

- Climate specific annual demand targets for all space conditioning
- Targets cost-optimized by location
- Mandatory peak load targets to assure thermal performance & resilience
- Source energy target per person for residential, square foot for commercial based on US conversion factors
- Air-tightness measured relative to opaque envelope area
- Standard applied to all building types including retrofits with an additional allowance for existing thermal bridging © 2017 Passive House Institute US | PHIUS 20

DOE PERFORMANCE STAIRCASE

						Source Zero Renew- able Energy System
					Balanced Ventilation HRV/ERV	Balanced Ventilation HRV/ERV
				SOLAR READY Depends on climate	SOLAR READY ALWAYS	SOLAR READY ALWAYS
				Eff. Comps. & H2O Distrib	Eff. Comps. & H ₂ O Distrib	Eff. Comps. & H ₂ O Distrib
				Air Pacakge	Air Pacakge	Air Pacakge
				Ducts in Condit, Space	Ducts in Condit, Space	Ducts in Condit. Space
		HVAC QI w/WHV	HVAC QI w/WHV	HVAC QI w/WHV	Micro-load HVAC QI	Micro-load HVAC QI
		Water Management	Water Management	Water Management	Water Management	Water Management
		Independent Verification	Independent Verification	Independent Verification	Independent Verification	Independent Verification
IECC 2009 Enclosure	IECC 2012 Enclosure	IECC 2009 Enclosure	IECC 2012 Enclosure	IECC 2012/15 Encl./ES Win.	Ultra-Efficient Enclosure	Ultra-Efficient Enclosure
HERS 85-90	HERS 70-80	HERS 65-75	HERS 55-65	HERS 48-55	HERS 35-45	HERS < 0
1ECC 2009	IECC 2012	ENERGY STAR v3	ENERGY STAR v3.1	ZERO ZERH	PHIUS PHIUS+	C PHIUS+ SourceZero

COOPERATION WITH ZERH YIELDS HERS

Source: http://energy.gov/sites/prod/files/2016/04/f3 0/Green%20Future_Presentation_2016.pdf

CERTIFICATION PROTOCOL DIFFERENCES

Internal Gains, TFA and iCFA, Occupancy & MELs

PHI –

- Unrealistically low internal gain default assumptions
- Treated Floor Area (TFA) energy reference area – EUIs are not directly comparable!
- Occupancy assumption by fixed square foot per person
- Different MEL and lighting
 assumptions
- Source EUI based on German conversion factors – *not directly comparable!*

80% of RESNET internal gain
 assumptions

PHIUS+2015 -

- Interior conditioned floor area (iCFA) energy reference area – *EUIs are not directly comparable!*
- Occupancy calculated bedrooms +1
- Different MEL and lighting assumptions
- Source EUI based on US conversion factors – *not directly comparable!*

Site Energy: Monitored vs Adjusted Models

Site Energy Comparison

PASSIVE BUILDING PRINCIPLES

MULTIFAMILY HAS BETTER **SURFACE TO VOLUME** RATIO THAN SMALLER STRUCTURES

Single Family Home Specs: •R-50 WALLS •R-90 ROOF •R-50 SLAB •R-8 WINDOWS

Large Multifamily Specs: •R-32 WALLS •R-50 ROOF •R-20 SLAB •R-5 WINDOWS

PH THERMAL COMFORT RANGE

Interior comfort conditions winter 68 º F, summer 77 º F, RH 40-60%

Source: ASHRAE Standard 55-2010 Thermal Environmental Conditions for Human Occupancy

THERMAL BREAKS

MINIMIZE POINT TB LOSS

Photo courtesy Jesse Thompson

Illustrations by RDH, Shawn Colin, NAPHC 2014

STRUCTURAL THERMAL BRIDGING CAUSED BY CLADDING SYSTEMS ATTACHMENT – RED SPACER BEHIND STAND-OFF=THERMAL BREAK

UPTOWN LOFTS STRUCTURAL THERMAL BRIDGE ISSUE: SEPARATION TO UNCONDITIONED PARKING DECK

		Mechanical Pr	operties	
Tensile Strength	PSI.		ASTM D638	9,400
Flexural Strength	PSI		ASTM D790	22,300
Compressive Strength	PS1		ASTM D695	38,900
Compressive Modulus	PSI		ASTM D695	1,450,377
Shear Strength	PSI		ASTM D732	13,400
Thickness	in		*	1/4", 1/2", 1"
		Flame Resis	tance	
Oxygen Index	%O2		ASTM D2863	21.8
		Thermal Pro	perties	
Coefficient of Thermal Expansion		in/in/ºCx10+	ASTM D696	2.2
Thermal Conductivity		BTU/Hr/ft//in/°F	ASTM C177	1.8**
		W/m*K		0.259
** Reference: Thermal Conductivity of Steel		BTUMHITE/IN/TF		374,5

Additional Products for Building & Construction

AIR-TIGHTNESS BENEFITS

Energy benefits:

- Minimizes energy losses in conjunction with ventilation
- Minimizes latent loads in conjunction with ventilation

Hygrothermal benefits:

- Minimizes moisture traveling into the wall through infiltration or exfiltration
- Minimizes condensation risk in components
- Increases durability of assemblies

EXTERIOR AI EASE OF CONTINUO SPRAY-A PLIED FO

BARRIERS

HIGH PERFORMANCE WINDOWS FOR BETTER COMFORT

IMPROVING WINDOW PERFORMANCE MINIMIZES HEAT LOSS/GAIN, ASSURES THERMAL COMFORT, ELIMINATES CONDENSATION

DALING IN WINDOW PERFORMANCE BY CLIMATE

Product name:	Alpen Cas	sement 07	3			Center-	of-glass prop	perties
ASHRAE/IECC /DOE North American Climate Zone	South- facing	North, East, West - facing	Pa	PHIUS assive House Institute	US		Alpen _073	
			Whole-w	indow installed	l U-value	L L	Jcog-Value	
Climate specific	recommen	idations:	W/m2K	BTU/hr.ft2.F		SHGC	W/m2K	BTU/
8			0.82	0.14		0.469	0.478	
7			0.82	0.15		0.469	0.482	
6			0.83	0.15		0.469	0.489	
5			0.83	0.15	_	-		
4			0.83	0.15	Find &	Compare	Window	/S
Marine North			0.84	0.15	DUILIS Con	tified Data for Mir	viewe - DUILIS	Codifi
Marine South	\checkmark		0.84	0.15	Philos Cel	uned Data for wir	luows . Philos	scerui
3	\checkmark		0.84	0.15	Available	manufacturers		
2 West			0.83	0.15	Alpen Cold Choin			
2 East			0.83	0.15	HH HH	Frame Mat	erial (FM)	
					Intus	FG - Fibergl	100	
Alpen Casement	073		FI	RAME	Kolbe	VL - Vinyl		
		Fram	e height	U-fra	Marvin	WD - Wood		

	Frame height		U-fra	
	mm	in	W/m2K	
Head	72	2.82	1.12	
Sill	72	2.82	1.12	
Left	72	2.82	1.12	
Right	72	2.82	1.12	
Valid through February 2016	i			

- 10

re Windows

Windows : PHIUS Certified Window Data for Designers & Builders

BTU/hr.ft2.F

0.084

0.085

0.086

Del Contrato (DO)

37

ers:

Alpen		Psi-Opaque	Grade (PO)	
Cold Chain HH	Frame Material (FM)	Frame-space heat transmis single linear h comparison o	r grade is based on combining the frame sion and the edge-of glass effect into a reat loss coefficient. This provides a basis for (frames of different widths and different	
Intus	FG - Fiberglass	frame-spacer combinations.		
Kolbe	VL - Vinyl	PO	Frame-Spacer	
Marvin	WD - Wood	[Btuh.ft.F]	Grade	
Thermotech	PC - Unplasticized Polyvinyl Chloride (uPVC)	<=0.065	A*	
Veka	Al - Aluminum	<=0.110	A*	
Wasco	AW - Aluminum Clad Vibod	<=0.155	в	
Zola		<=0.200	c	
		-0.200	D	

Downloadable datasheets (.pdf) and therm files (.zip) for each listing

Recommendations by climate zone

Climate zone map

BALANCED VENTILATION HEAT RECOVERY & SPACE CONDITIONING

CENTRALIZED VENTILATION W/INTEGRATED SPACE CONDITIONING

DECENTRALIZED SOLUTION

© 2017 PHIUS

SEMIDECENTRALIZED

Most common solution - Individual ventilator in each unit

- Better controls, more accurate ventilation air delivery
- Solution for local codes where exhaus can not be drawn from all apartments and go through a common air to air heat exchanger
- Space conditioning via central VRF system •Separate supply ducts from ventilation air due to different air velocities during
 - space conditioning

COMPARTMENTALIZATION OF UNITS TO CONTROL STACK EFFECT IDEALLY ONE VENTILATOR PER UNIT FOR INDIVIDUAL CONTROL

WUFI PASSIVE VERIFICATION

(C) WUFI® Passive V.3.0.3.0 D:\Dropbox (PHIUS)\1283 - Second and Delaware Apartments - Prudence Ferreira\0. Energy Model\2+D .mwp

File Input Options Database Help

Second & Delaware – CPHC Prudence Ferreira – PHIUS+ 2015 project

LEGISLATION & INCENTIVES

MASSACHUSETTS

780 CMR: STATE BOARD OF BUILDING REGULATIONS & STANDARDS

N1106.1.1 (R406.1.1) Approved Alternative Energy Performance Methods. The following rating threshold criteria are sufficient to demonstrate energy code compliance under section N1106 without calculation of a standard reference design. The mandatory provisions of subsection N1106.2 also apply:

1. ENERGY STAR Homes 3.1 path.

2. Passive House Institute US (PHIUS) Approved Software. PHIUS+ 2015: Passive Building Standard - North America, or another approved software by PHIUS, where Specific Space Heat Demand, as modeled by a Certified Passive House Consultant, is less than or equal to 10 kBTU/ft²/year. Compliance with this section requires that the criteria of C402.4, C403.2, C404, and C405 are met.

MASSACHUSETTS

780 CMR: STATE BOARD OF BUILDING REGULATIONS & STANDARDS

C407.6.1.1 Approved Alternative Energy Performance Methods. The requirements of this section are approved performance methods to demonstrate compliance with Section C407 without calculation of a standard reference design:

1. RESNET Approved Software for Home Energy Rating System (HERS).

2. Passive House Institute US (PHIUS) Approved Software. PHIUS+ 2015: Passive Building Standard - North America, or another approved software by PHIUS, where Specific Space Heat Demand, as modeled by a Certified Passive House Consultant, is less than or equal to 10 kBTU/ft²/year. Compliance with this section requires that the criteria of C402.4, C403.2, C404, and C405 are met.

HUD INCENTIVES

Energy Efficiency Measures in MF Projects

Multifamily Accelerated Processing (MAP) Guide, 4430.G:

FHA explicitly recognizes and underwrites projected utility savings resulting from energy efficiency improvements. To qualify for these credits, projects must demonstrate proposed savings through an energy audit. FHA will underwrite up to 75 percent of proposed savings.

FHA to cut Mortgage Insurance Rates on Multifamily Mortgages: The rate reductions announced today will take effect on April 1, 2016, and will directly impact FHA's Multifamily Housing Programs and properties housing low- and moderate-income families and/or developments installing energy-efficient systems or building within federal energy guidelines.

U.S. Department of Energy Zero Energy Ready Home[™]

LENDER PARTNER AGREEMENT

This agreement is administered by the U.S. Department of Energy (DOE) in support of DOE Zero Energy Ready Home[™] program. It is being coordinated with the U.S. Environmental Protection Agency (EPA) ENERGY STAR[™] Certified Home and Passive House Institute US (PHIUS) high-performance home labeling programs. This is only an agreement between DOE and the Lending Partner, and therefore does not entitle

112TH CONGRESS 1ST SESSION H.R.

To facilitate and encourage construction and rehabilitation of buildings using the Passive House Building Energy Standard.

IN THE HOUSE OF REPRESENTATIVES

Mr. INSLEE introduced the following bill; which was referred to the Committee on

A BILL

- To facilitate and encourage construction and rehabilitation of buildings using the Passive House Building Energy Standard.
 - 1 Be it enacted by the Senate and House of Representa-
- 2 tives of the United States of America in Congress assembled,

3 SECTION 1. SHORT TITLE.

- 4 This Act may be cited as the "Passive House Act of
- 5 2011".

EXAMPLE PROJECTS

Orenco Station, Portland, OR, 57 Units

80 UNIT SRO MULTIFAMILY BUILDING RETROFIT

PASSIVE BUILDINGS

Stellar Apartments, 16 Units, Eugene, OR

Knickerbocker Project, 24 Units, Brooklyn, NY, Chris Benedict

AFFORDABLE DEVELOPMENTS

UPTOWN LOFTS - AFFORDABLE DEVELOPMENT IN PITTSBURGH

FIRST AFFORDABLE FULLY CERTIFIED 24 UNIT BUILDING

Orchards at Orenco Station Phase II, Portland, OR

ORCHARDS AT ORENCO PHASE II

RECENTLY COMPLETED

AFFORDABLE RETROFIT PROJECT IN WASHINGTON DC

©2017 Passive House Institute US | PHIUS 58

CHOM Village Center, Brewer, MI

Beach Green North, New York, NY

LARGEST MIDRISE UNDER CONSTRUCTION WITH 101 UNITS

3365 3rd AVENUE, BRONX, NY

425 Grand Concourse, NY, NY

HI-RISE PLANNED FOR BRONX, NY

PHIUS MULTIFAMILY RESOURCE CENTER

PASSIVE HOUSE FOR MULTIFAMILY BUILDINGS

Source: http:/multifamily.phius.org/

PHIUS MULTIFAMILY RESOURCE CENTER

DEVELOPERS WEBINAR SERIES

ORCHARDS AT ORENCO (PHASE I) PROJECT, HILLSBORO, OR

JESSICA WOODRUFF, HOUSING DIRECTOR AT REACH CRAIG KELLEY, SENIOR PROJECT MANAGER WITH HOUSING DEVELOPMENT CEN'

Originally aired April 28, 2016

SCALING PASSIVE HOUSE, 2ND & DELAWARE, KANSAS CITY, MO

JONATHAN ARNOLD, PRINCIPAL, ARNOLD DEVELOPMENT

Originally aired May 17, 2016

MULTIFAMILY PASSIVE BUILDING PROJECTS

The **PHIUS+2015** Passive Building Standard ignited the rapid growth of multifamily passive buildings from coast to coast. Learn more about proven best practices in the following case studies.

ORCHARDS AT ORENCO, OR

The Orchards at Orenco in suburban Portland, Oregon, is currently the largest multifamily passive building development in North America.

UPTOWN LOFTS ON FIFTH, PA

ACTION-Housing developed Uptown Lofts on Fifth in Pittsburgh to provide affordable housing with affordable utilities made possible by the high-performance passive building envelope.

BEACH GREEN NORTH, NY

Beach Green North, designed to meet passive building standards, also includes resilient features to weather heavy storm conditions in Far Rockaway, Queens, New York.

KNICKERBOCKER COMMONS, NY

Knickerbocker Commons is a six-story affordable multifamily passive building development in the Bushwick neighborhood of Brooklyn, New York.

PERCH HARLEM, NY

The Perch Harlem development is New York City's first market rate

Sunshine Terrace, Washington State

FIRST LICENSED HEALTH FACILITY, 34 UNITS

NEW RMI HEADQUARTERS IN BASALT

FEASIBILITY STUDIES

IBP

PASSIVE BUH B IS PART OF THE SOLUTION

www.PHIUS.org/www.PHAUS.org

