

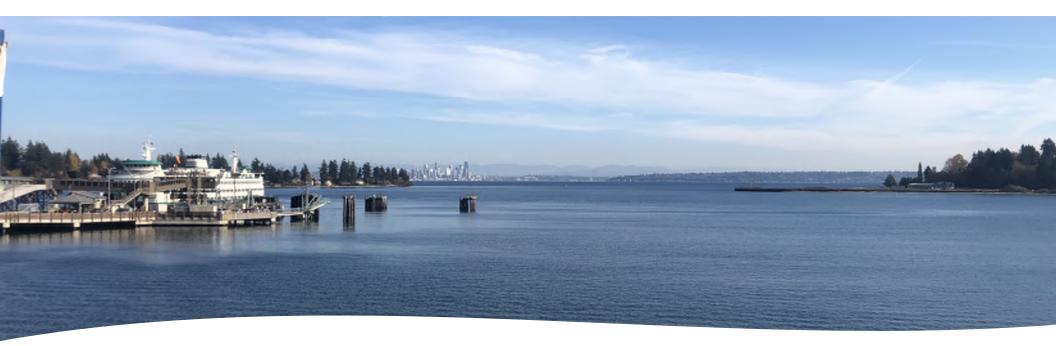
WELCOME TO SEABEC!

The Seattle Building Enclosure Council (SeaBEC) is a nonprofit organization whose purpose is to promote the pursuit of excellence in the design, construction, or other technical aspects of the building enclosure. We investigate why buildings fail, explore cures for building enclosure failure, and share information on materials and methods to promote better building science.

INTRODUCTIONS

President: Inc.	Nathan Seney, OAC Services	Board Administrator: RDH		Penny Short,
Vice President: Science	Sam Packard, RDH Building	Sponsorship Coordinator:	Joel Thornberg	, Amento Group
Secretary: Partners	Amelia Davis, Northwest	Student Outreach: Bain Assoc.		Bill Thordarson,
Treasurer:	Jeff Dideon, OAC Services Inc.	Communications: OAC Services Inc. Technologie	ac a state of the	Grace Wong,
Education Chair:	Sharon Libby, Walsh	5	.5	
Construction		Past President: Bechtel Coatings		Rob Bechtel,
Membership Chair:	Robin Kotulka, Cross 2 Design			
Venue Coordinator:	Hilary Roy, Valley Supply			

2020 SEABEC SCHOLARSHIPS


SeaBEC will award (2) \$2,000 scholarships in 2020:

The 2020 application will be available shortly at: https://www.seabec.org/students

ANNOUNCEMENTS

Next Meeting: December 19, 2019 from 5pm to 7pm Annual Holiday Party Fundraiser and White Elephant Gift Exchange Dinner provided, cash bar available Location: OAC Services Inc, 2200 1st Ave. S, Suite 200, Seattle, WA

BUILDING ENCLOSURE EVENTS:

IIBEC Puget Sound: CSI Puget Sound: SeaBEC Meeting: Charity Mixer December 5th Holiday Party and Auction January 16th, David Nicastro, UT Austin, Durability of Weather Barriers

facades Seattle THE PREMIER CONFERENCE ON HIGH-PERFORMANCE BUILDING ENCLOSURES

Special pricing for friends of SeaBEC

Register now at: www.facadesplus.com

The Architect's Newspaper PRESENTED BY

REFRESHMENT SPONSOR:

Patrick McMahon Innotech-Windows

TOPIC: ENERGY CODE AND THE BUILDING ENVELOPE: RECENT AND UPCOMING CHANGES

Presented by:

Dr. Krishnan Gowri, Intertek

PROVIDER: PROVIDER NUMBER: COURSE NUMBER: INTERTEK 404108121 BCLUNA040-01P

ENERGY CODE AND THE BUILDING ENVELOPE Recent and Upcoming Changes

Krishnan Gowri, *Ph.D., BEMP, LEED AP, Fellow ASHRAE* Senior Consultant – Building Science Solutions

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

COPYRIGHT MATERIALS

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© Intertek 2016

COURSE DESCRIPTION

This course will provide a comprehensive summary of recent and upcoming energy code changes that architects and designers need to consider in building envelope design. Tools and techniques for determining energy code compliance using component trade-off and performance assessment methods will be discussed. Energy impact of air-barrier effectiveness will be presented with strategies to meet the mandatory air-barrier requirements. At the end of this session, attendees will be ready to identify and incorporate new energy code requirements early in the design process.

LEARNING OBJECTIVES

energy codes

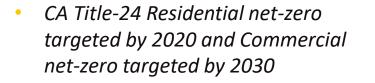
1

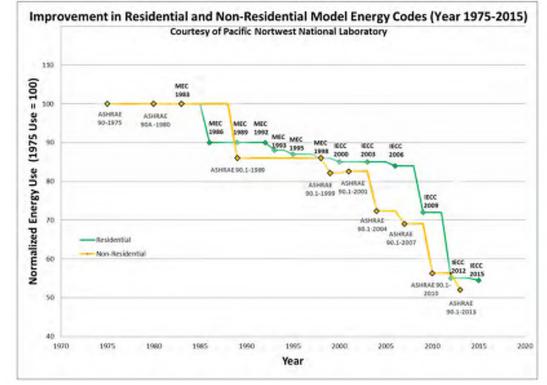
2

Learn the structure and contents of the Washington State energy code requirements

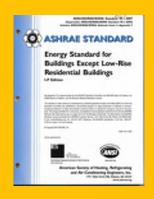
Understand the history, scope, and objectives of

Acquire knowledge of new and upcoming mandatory, prescriptive and component trade-off compliance requirements for building envelope


4


3

Understand the details of air-barrier requirements and test methods to comply with the standard


ENERGY CODES – OVERALL IMPACT AND DIRECTION

- ~20% savings in 2000 codes compared to 1980s
- ~50% savings achieved in 2013 codes
- Net Zero targeted in 2030

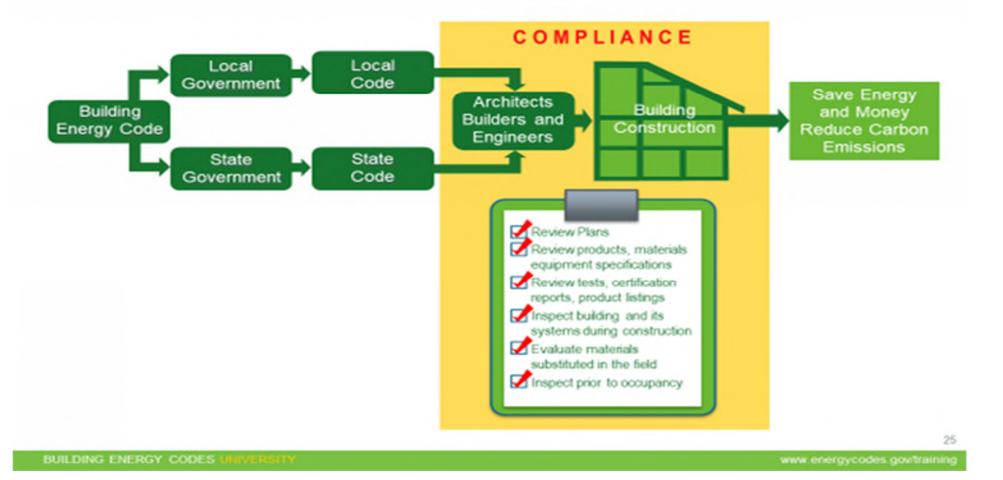
BUILDING ENERGY CODES

International Energy Conservation Code

State and Locally Adopted Codes

ENERGY CODE ADOPTION MAP

- 10 States 90.1-2013 or better •
- 27 States 90.1-2007 to 2013 •
- 6 States 90.1-2007 or lower •
- 8 States No Energy Codes •



Updated as of December 2018 *Source: https://www.energycodes.gov/adoptions/states*

Codes and the Building Process

Energy Efficiency & Renewable Energy

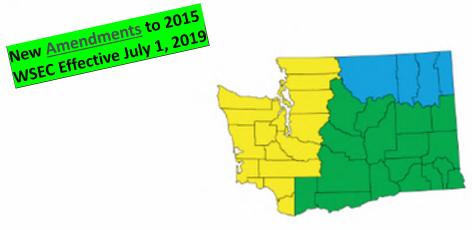
State Code Status: Washington

Current Commercial Code

2015 Washington State Energy Code (WSEC)

Based on the 2015 IECC with state-specific amendments Passed 1/6/2016, effective 7/1/2016

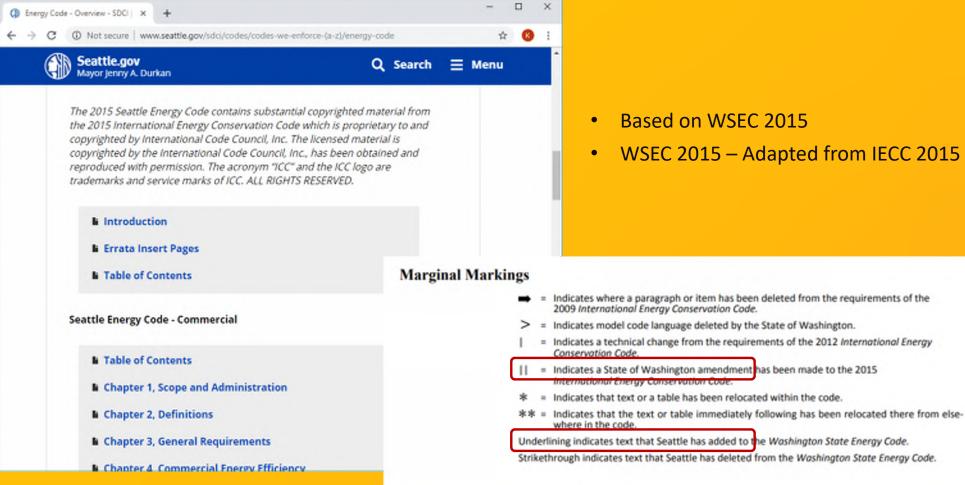
Current Residential Code


2015 Washington State Energy Code (WSEC)

Based on 2015 IECC with state-specific amendments Passed 1/6/2016, effective 7/1/2016

Can use REScheck to show compliance.

Code Enforcement


The State Building Code Act (Chapter 19.27 RCW) requires that each local jurisdiction enforce the State Building Code within its jurisdiction. Any jurisdiction can contract with another jurisdiction or an inspection agency to provide the mandated enforcement activities.

Climate Zones: 4C, 5B, 6B

Source: http://bcapcodes.org/code-status/state/washington/

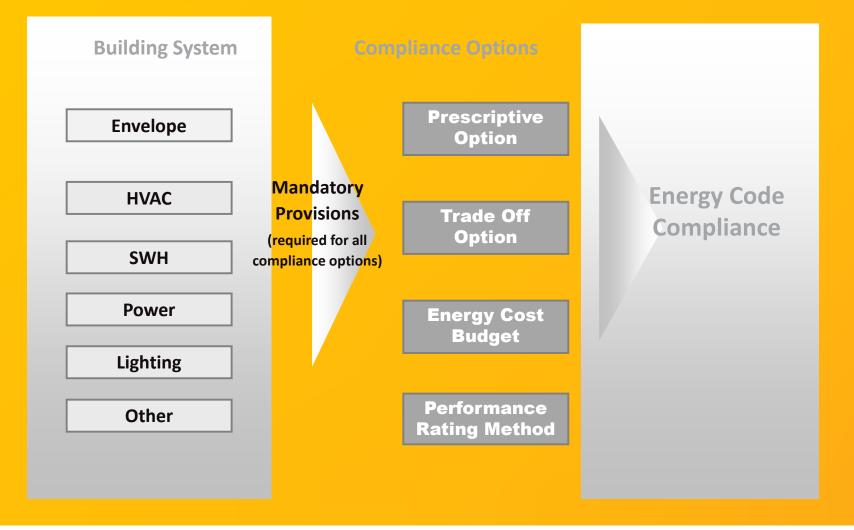
SEATTLE ENERGY CODE

- Based on WSEC 2015
- WSEC 2015 Adapted from IECC 2015

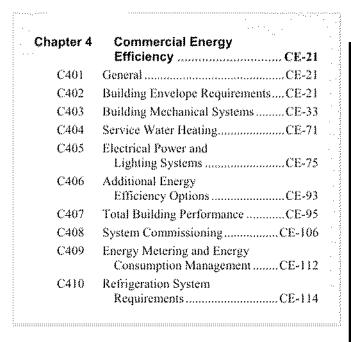
What Do Building Energy Codes and Standards Cover?

For both residential and commercial:

- Building Envelope
- Mechanical
- Service Water Heating
- Lighting
- Electrical Power

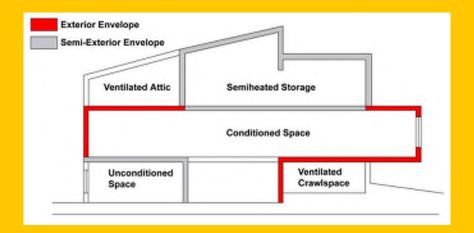

Chapter 1	Scope and Administration	CE-3
C101	Scope and General Requirements	CE-3
C102	Alternate Materials—Method of Construction, Design or Insulating Systems	
C103	Construction Documents	CE-3
C104	Inspections	CE-5
C105	Validity	CE-6
C106	Referenced Standards	CE-6
C107	Fees	CE-6
C108	Stop Work Order	CE-6
C109	Board of Appeals	CE-7
C110	Violations	CE-7
C111	Liability	CE-7
Chapter 2	Definitions	CE-9
C201	General	CE-9
C202	General Definitions	CE-9
Chapter 3	General Requirements	CE-17
C301	Climate Zones	CE-17
C302	Design Conditions	CE-17
C303	Materials, Systems and Equipment	CE-17

Chapter 4	Commercial Energy Efficiency	CE-21
C401	General	CE-21
C402	Building Envelope Requirement	sCE-21
C403	Building Mechanical Systems	CE-33
C404	Service Water Heating	CE-71
C405	Electrical Power and Lighting Systems	CE-75
C406	Additional Energy Efficiency Options	CE-93
C407	Total Building Performance	CE-95
C408	System Commissioning	CE-106
C409	Energy Metering and Energy Consumption Management	CE-112
C410	Refrigeration System Requirements	CE-114
Chapter 5	Existing Buildings	CE-119
C501	General	CE-119
C502	Additions	CE-119
C503	Alterations	CE-120
C504	Repairs	CE-125
C505	Change of Occupancy or Use	CE-125
Chapter 6	Referenced Standards	CE-102


<u>WSEC 2015</u> – COMMERCIAL ENERGY CODE PROVISIONS

22

Compliance Paths in Model Codes


WSEC - COMMERCIAL CODE COMPLIANCE REQUIREMENT

C401.2 Application. Commercial buildings shall comply with one of the following:

- The requirements of Sections C402, C403, C404, C405, C406, C408, C409 and C410.
- The requirements of Section C407, C408, C409, C410, C402.5, C403.2, C404, C405.2, C405.3, C405.4, C405.6 and C405.7. The bailding energy consumption shall be equal to or less than 87, 90 or 93 percent of the standard reference design building, depending on the option selected per Section C407.3.

BUILDING ENVELOPE REQUIREMENTS – 2015 WSEC/C402

Building thermal envelope to comply with the following:

- Specific insulation requirements of Section C402.2
- Thermal requirements of either:
 - R-value-based method of Section C402.1.3
 - U-, C-, and F-factor-based method of Section C402.1.4 OR
 - Component performance alternative of Section C402.1.5
- Fenestration in building envelope assemblies C402.4
- Air Leakage of building envelope assemblies C402.5 (Mandatory)

SEATTLE ENERGY CODE COMPLIANCE PATHS

New commercial construction projects in Seattle can comply with the 2015 Seattle Energy Code (SEC) through one of three pathways:

- 1. Prescriptive Path (includes C402.1.5 Component Performance Alternative)
- 2. Total Building Performance Path (C407)
- **3. Target Performance Path** (C401.3)

The Total Building Performance and the Target Performance paths each require whole building energy modeling.

The Total Building Performance Path uses only modeled performance to show code compliance.

The Target Performance Path also uses energy modeling to demonstrate that the proposed design is capable of hitting the operational performance target, but in addition, this path requires that the actual measured building energy consumption meets the target.

BUILDING ENVELOPE PRESCRIPTIVE COMPLIANCE OPTIONS

- Three Methods for compliance of building components:
- C402.1.3 Insulation component R-value based method
- C402.1.4 Assembly U-factor, C-factor or F-factor based method
- C402.1.5 Component Performance Alternative

THE PRESCRIPTIVE PATH – COMPONENT R-VALUE REQUIREMENTS (WSEC 2015)

Roof and Wall Assemblies

Table C402.1.3 - R-Value Method

CLIMATE ZONE	5 AND MARINE 4		
	All Other	Group R	
Roof	1		
Insulation entirely above	8-306		
deck	8-38ci	8-356	
	8.25+	R-25 +	
Metal buildings	R-1515	81115	
Attic and other	8-49	R-43	
Walls, Abey	ve Grade		
Mass	8.9.56	8-13.30	
	8.52.4	Rilla	
	8,136	8.434	
Mecal buildings	R-19ci	R-196	
	8-13+	R-23 +	
Steel framed	R-10ci	R4.5d	
Wood Framed and other	82114	8.21140	
Walls, Belo	ov grado		
	Same as	Same as	
	above	above	
Below grade walls	grade	erade	

CLIMATE ZONE	5 AND MARINE 4		
	All Other	Group R	
For	45		
Insulation entirely above	0.0004	210.035	
deck	U-0.027	U 0.027	
Metal buildings	U-0.031	0-0.031	
Attic and other	U-0.021	00.025	
NEW - Joist or single			
ratter	U-0.027	U-0.027	
Walls, Abo	ve Grade		
Mass	U-0.394	U 0.078	
NEW - Mass transfer deb			
dab edge	U.0.20	U-0.20	
Metal buildings	U-0.052	U-0.052	
Steel framed	0.055	U 0.055	
Wood framed and other	U-0.054	U-0.054	
Walls, Beb	iov grade		
	Same as	Same as	
	above	obove	
Below grade walls	grade	prede	

· C402.1.4.1 Thermal resistance of cold-formed steel walls

 U-factors of walls with cold-formed steel studs may be determined per Equation 4-1:

U = 1/[Rs + (ER)]

Rs = The cumulative R-value of the wall components along the path of heat transfer, excluding the cavity insulation and steel studs.

ER = The effective $R\mbox{-}value$ of cavity insulation per Table C402.1.4.1.

Table C402.1.3 Alternate Prescriptive R-value Table

Assemblies with continuous involution (one definition)	Alternate option for assemblies with metal ponetrations, greater than 0.04% but hos than 0.08%		Alternate option for assemblies with metal penetrations, greater than or oqual to 0.06% but less than 0.12%	
R-9.5ci		8-11.%ci	R-15a	
R-11.4ci		R-14.3ci	R-15.7ci	
R-D.3ci Press	riptive	R-16.6ci	R-18.3ci	
8 12 8 1	Framed	R-19.6ci	R-21ci	
R-30ci Wall		R-38ci	R-42ci	
11-38ci	/	R-4hci	8-53ci	
R-13 + 8-7.5ci	1	-13 + R-9.4di	8-13 + 8-16.3ci	
R-13 = R. 10cm	< x	43 = 30 12 Set	R-13 + R-13.8d	
8.13 + R-12.5ci	R	-13 + 8-15.6ci	8.13 + 8.17.2vi	
8-13 = R-13.6	8	-13 + 3c-16.3ci	R-13 + R-17.94i	
R-19 + R-8.5vi	8	19 - 3. 10.6ci	R-29 + R-11.7vi	
R-19 + R-164	R	09 + 3017.5ci	R-19 + R-18.2ci	
R-19 = R-16ci	5	6-19 + R-30ci	R-19 = R-22ci	
R-29 + R-3.8ci	8	-20 + R-4.6ci	R-20./ R-5.3di	
R-21 + R-5ci		-21 = R-6.3ci	3-21 = R-6.9ti	

THE PRESCRIPTIVE PATH – COMPONENT R-VALUE REQUIREMENTS (WSEC 2018)

Roof and Wall Assemblies

Table C402.1.3 - R-Value Method CLIMATE ZONE 5 AND MARINE 4			v	Valls, Above Grade	
	All Other	Group R			
Roof	1		Mass	R-9.5° ci	R-13.3ci
realistion entirely above seek	8-306 8-38d	8-356		K-9.5" CI	K-15.50
Metal buildings	8-25+ R-11-15	R25+ R1115	Mass transfer deck slab edge	<u>R-5</u>	<u>R-5</u>
Attic and other	8-19	R-43	<u></u>		
Walls, Abov	/e Grade		Matel building	R-19ci or	R-19ci or
Mass	R-9.5ci	R-13.3ci	Metal building	R-13+13ci	R-13+13ci
	R-13 + R-13ci	R-13-4 R-13d		R-13 +	R-19 +
Metal buildings	R-19ci	R-19ci	Steel framed		
	R-13 +	R-19 +		R-10ci	R-8.5ci
Steel framed	R-10ci	R-8.5ci			R 21 int
Wood framed and other	R-21 int	R-21 int		D 01 int on	
Walls, Below grade		Wood framed and other	R-21 int or	R-13+7.5ci std or	
	Same as above grade	Same as above grade	wood framed and other	R-15+5ci std	R-20+3.8ci std or R-25 std

No change to U-factor method, except the U-factor change from U-0.054 to U-0.051 for "Wood frame and other" assemblies

COMPONENT PERFORMANCE APPROACH (WSEC 2015)

C402.1.5 Component performance alternative. Building envelope values and *fenestration areas* determined in accordance with Equation 4-2 shall be permitted in lieu of compliance with the *U*-, *F*- and *C*-factors in Tables C402.1.3 and C402.1.4 and the maximum allowable fenestration areas in Section ((C402.4)) C402.4.1.

 $A + B + C + D + E \le Zero$ (Equation 4-2)

where:

- (Equation 4
- A = Sum of the (UA Dif) values for each distinct assembly type of the *building thermal envelope*, other than slabs on grade ((and *below-grade walls*)).

UA Dif = UA Proposed - UA Table.

UA Proposed = Proposed U-value x Area.

- UA Table = (U-factor from Tables C402.1.4 or C402.4 ((or Section C402.1.3)) x Area.
- B = Sum of the (FL Dif) values for each distinct slab-ongrade perimeter condition of the *building thermal envelope*.
 - FL Dif = FL Proposed FL Table.
 - FL Proposed = Proposed F-value x Perimeter length.
 - FL Table = (F-factor specified in Table C402.1.4) x Perimeter length.

C = (CA x UV) - (CA x U_{Wall}), but not less than zero

- CA = (Proposed Vertical Fenestration Area) (Vertical Fenestration Area allowed)
- UA Wall = Sum of the (UA Proposed) values for each opaque assembly of the exterior wall
- UAW = Sum of the (UA Proposed) values for each above-grade wall assembly
- Uwall = UAW/sum of wall area (excludes vertical fenestration area)
- UAV = Sum of the (UA Proposed) values for each vertical fenestration assembly
- UV = UAV/total vertical fenestration area

Where the proposed skylight area is less than or equal to the skylight area allowed by Section C402.4.1, the value of D (Excess Skylight Value) shall be zero. Otherwise:

D = (DA x US) - (DA x URoof), but not less than zero

- C402.1.5 Component performance UA calculation
 U-factor * Area Trade-off Path
 - Allows one or more envelope elements that are better than Code to make up the difference for other envelope elements that do not meet Code.
 - When the percentage of fenestration exceeds the maximum allowed, the Code Target UA is adjusted to make up for the extra fenestration. (Target area adjustment)

COMPONENT PERFORMANCE APPROACH (WSEC 2018)

C402.1.5 Component performance alternative. Building envelope values and fenestration areas determined in accordance with Equation 4-2 shall be permitted in lieu of compliance with the U-factors and F-factors in Table C402.1.4 and C402.4 and the maximum allowable fenestration areas in Section C402.4.1.

For buildings with more than one *space conditioning category*, component performance compliance shall be demonstrated separately for each space conditioning category. Interior partition ceilings, walls, fenestration and floors that separate space conditioning areas shall be applied to the component performance calculations for the space conditioning category with the highest level of space conditioning.

A + B + C + DProposed Total UA $\leq \frac{2 \text{ero}}{\text{Allowable Total UA}}$

(Equation 4-2)

Proposed total UA	=	UA-glaz-prop + UA sky-prop + UA-opaque-prop + FL-slab-prop
Allowable total UA	_	UA-glaz-allow + UA-glaz-excess + UA sky-allow + UA-sky-excess + UA-opaque-allow +
	_	FL-slab-allow

C402.1.5.2 SHGC rate calculations. Solar heat gain coefficient shall comply with Table C402.4. The target SHGCA_t and the proposed SHGCA_p shall be calculated using Equations 4-3 and 4-4 and the corresponding areas and SHGCs from Table C402.4.

EQUATION 4-3 TARGET SHGCA

Proposed Total SHGC×A ≤ Allowable Total SHGC×A

(Equation 4-3)

FENESTRATION PRESCRIPTIVE REQUIREMENTS (WSEC 2015)

- C402.4.1 Prescriptive maximum area
 - o Area Limit = 30%
 - o Calculated per gross above-grade wall area.
 - Fenestration area limit does not include opaque doors or opaque spandrel.
- Three alternates available that increase the area limit to 40%
 - 1. Substantial daylit zone area
 - 2. High performance fenestration
 - 3. NEW High performance DOAS system
- Fenestration alternates allowed for Component Performance but not Total Building Performance.

Vertical Fenestration and Skylights

Table C402 A . IL Factor & SHGC

lable C402.4 - U-Factor & SHGC				
CLIMATE ZONE	5 AND MARINE 4			
Vertical Fenestration				
U-Factor				
Non-metal framing (all)	U-0	.30		
Metal framing (fixed)	U-0	.38		
Metal framing (operable)	U-0	.40		
Metal framing (entrance				
doors)	U-0.60			
SHGC				
Orientation	SEW	N		
PF < 0.2	0.4	0.53		
0.2 =< PF < 0.5	0.48 0.58			
PF >= 0.5	0.64 0.64			
Skylights				
U-factor	0.5			
SHGC	0.35			

- · SHGC multipliers have been pre-applied.
- Area-weighting of fenestration U-Factors between *like* fenestration categories is allowed.

FENESTRATION PRESCRIPTIVE REQUIREMENTS (WSEC 2018)

C402.4.1 Maximum area. The total building vertical fenestration area (not including opaque doors and opaque spandrel panels) shall not exceed 30 percent of the total building gross above-grade wall area. The skylight area shall not exceed 5 percent of the total building gross roof area (skylight-to-roof ratio).

C402.4.1.1 Vertical fenestration maximum area with high performance alternates. For buildings that comply with Section C402.4.1.1.1 or C402.4.1.1.2, the total building vertical fenestration area is permitted to exceed 30 percent but shall not exceed 40 percent of the gross above grade wall area for the purpose of prescriptive compliance with Section C402.1.4.

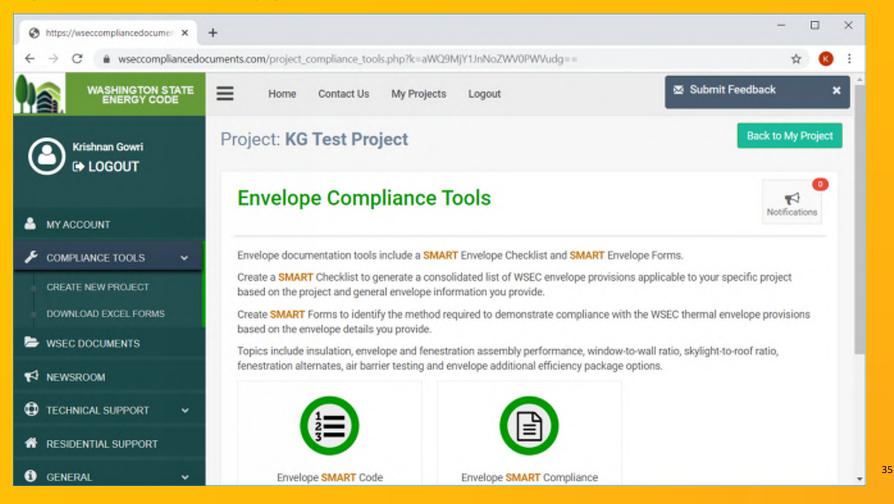
- No less than 50 percent of the total conditioned floor area in the building is within the daylight zone that includes daylight responsive controls
- VT is greater than or equal to 1.1 times the SHGC or 0.50 which ever is greater

CLIMATE ZONE	5 AND MARINE 4		
Vertical Fenestration <u>windows rated in accordance with</u> <u>AAMA/CSA101/LS.2/A440.</u> <u>vertical curtain walls and site-built</u> <u>fenestration products</u> *			
Fixed ^b U-factor	<u>U-0.38</u>		
Operable ^c U-factor	<u>U-0.40</u>		
U-factorEntrance doors			
Nonmetal framing (all)* U-factor	0.30 <u>U-0.60</u>		
Metal framing (fixed) ⁺	0.38		
U-factor for all other vertical fenestration			
U-factor	<u>U-0.30</u>		
Metal framing (operable) [*]	0.40		
Metal framing (entrance doors)*	0.60		

SHGC for all vertical fenestration				
Orientation	SEW	Ν		
PF < 0.2	0.40<u>0.38</u>	0.53<u>0.51</u>		
$0.2 \leq \mathrm{PF} < 0.5$	0.48<u>0.46</u>	0.58<u>0.56</u>		
$\mathrm{PF} \geq 0.5$	0.64<u>0.61</u>	0.64<u>0.61</u>		
Skylights				
U-factor	<u>U-</u> 0.50			
SHGC	0.35			

COMPLIANCE TOOLS

• Web-based


- Prescriptive/UA Compliance
- On-line Submission
- Spreadsheet, compliance checklist

<u>COMcheck</u>

- Web-based/Desktop
- No WA state version available

WSEC COMPLIANCE TOOL

https://wseccompliancedocuments.com/index.php

THE PRESCRIPTIVE PATH (WSEC 2015)

Projects pursuing the prescriptive option are required to comply with at least two additional efficiency package options, per **Section C406.** This is in addition to meeting the prescriptive envelope requirements.

Additional efficiency package options are :

- Increased HVAC performance
- Reduced lighting power
- Enhanced lighting controls
- On-site renewable energy
- Dedicated Outdoor Air System
- High-Efficiency Service Water Heating
- Enhanced Envelope Performance
- Reduced Air Infiltration

ADDITIONAL EFFICIENCY PACKAGE OPTIONS – ENVELOPE (WSEC 2015)

- Enhanced Envelope Performance
 - Total UA of building thermal envelope as designed to be not less than 15% below total UA of building thermal envelope per Section C402.1.5
- Reduced Air Infiltration
 - Air infiltration verified by whole-building pressurization test
 - Per ASTM E779 or ASTM E1827
 - By independent third party
 - Measured air-leakage rate not to exceed 0.25 cfm/ft² under pressure differential of 0.3 inches w.c. (75 Pa), with calculated surface area the sum of above and below-grade building envelope
 - Submit report to code official and building owner
 - Including: tested surface area, floor area, air by volume, stories above grade, and leakage rates

THE PRESCRIPTIVE PATH (WSEC 2018)

SECTION C406 ADDITIONAL EFFICIENCY PACKAGE-OPTIONS

C406.1 Requirements Additional energy efficiency credit requirements. Buildings shall comply with no loss th following: New buildings and changes in space conditioning, change of occupancy and building additions in accordance with Chapter 5 shall comply with sufficient packages from Table C406.1 so as to achieve a minimum number of six credits. Mixed use buildings shall have a conditioned space area weighted average number of credits by building occupancy of at least six credits.

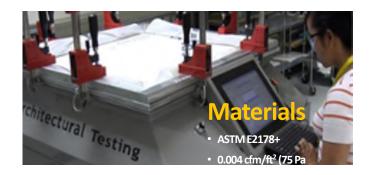
EFFICIENCY PACKAGE CREDITS									
	Commercial Building Occupancy								
Code Section	Group R-1	Group R-2	Group B	Group E	Group M	All Other			
	Additional Efficiency Credits								
1. More efficient HVAC performance in accordance with Section C406.2	2.0	<u>3.0</u>	<u>3.0</u>	<u>2.0</u>	<u>1.0</u>	2.0			
2. Reduced lighting power: Option 1 in accordance with Section C406.3.1	<u>1.0</u>	<u>1.0</u>	<u>2.0</u>	2.0	<u>3.0</u>	<u>2.0</u>			
3. Reduced lighting power: Option 2 in accordance with Section C406.3.2 ^a	<u>2.0</u>	<u>3.0</u>	4.0	<u>4.0</u>	<u>6.0</u>	<u>4.0</u>			
4. Enhanced lighting controls in accordance with Section C406.4	<u>NA</u>	<u>NA</u>	<u>1.0</u>	<u>1.0</u>	<u>1.0</u>	<u>1.0</u>			
5. On-site supply of renewable energy in accordance with C406.5	<u>3.0</u>	<u>3.0</u>	<u>3.0</u>	<u>3.0</u>	<u>3.0</u>	<u>3.0</u>			

TABLE C406.1

6. Dedicated outdoor air system in accordance with Section C406.6 ^b	<u>4.0</u>	<u>4.0</u>	<u>4.0</u>	NA	NA	<u>4.0</u>			
7. High performance dedicated outdoor air system in accordance with Section C406.7	<u>4.0</u>	<u>4.0</u>	<u>4.0</u>	<u>4.0</u>	<u>4.0</u>	<u>4.0</u>			
8. High-efficiency service water heating in accordance with Sections C406.8.1 and C406.8.2	<u>4.0</u>	<u>5.0</u>	NA	NA	NA	<u>8.0</u>			
 High performance service water heating in multi- family buildings in accordance with Section 	<u>7.0</u>	<u>8.0</u>	NA	NA	NA	NA			
10. Enhanced envelope performance in accordance with Section C406.10	<u>3.0</u>	<u>6.0</u>	<u>3.0</u>	3.0	3.0	<u>4.0</u>			
11. Reduced air infiltration in accordance with Section. C406.11	1.0	2.0	1.0	1.0	1.0	1.0			
12. Enhanced commercial kitchen equipment in accordance with Section C406.12	<u>5.0</u>	<u>NA</u>	NA	NA	<u>5.0</u>	5.0 (Group A-2 only)			
a. Projects using this option may no	a. Projects using this option may not use Item 2.								

Projects using this option may not use Item 2.

This option is not available to buildings subject to the prescriptive requirements of Section C403.3.5.


ADDITIONAL EFFICIENCY PACKAGE OPTIONS – ENVELOPE (WSEC 2018)

- Enhanced Envelope Performance
- (no change)
 - Total UA of building thermal envelope as designed to be not less than 15% below total UA of building thermal envelope per Section C402.1.5
- Reduced Air Infiltration
 - Air infiltration verified by whole-building pressurization test
 - Per ASTM E779 or ASTM E1827
 - By independent third party
 - Measured air-leakage rate not to exceed 0.17
 cfm/ft² under pressure differential of 0.3 inches w.c. (75 Pa), with calculated surface area the sum of above and below-grade building envelope
 - Submit report to code official and building owner
 - Including: tested surface area, floor area, air by volume, stories above grade, and leakage rates

MANDATORY REQUIREMENTS

- Air Leakage
- Air Barriers
- Fenestration Air Leakage
- Rooms Containing Fuel-Burning Appliances
- Air intakes, exhaust openings, stairways and shafts
- Loading dock weather seals
- Vestibules
- Recessed lighting

WSEC AIR BARRIER REQUIREMENTS

Air Barrier Requirement

The Air Barrier is the protection layer designed to separate the conditioned air from the ambient air. In most cases, the Weather Resistive Barrier (WRB) also acts as the air barrier. In rare cases you may design the air barrier to be the interior sheathing of the exterior wall. Other system materials may include membrane roofs, floor slabs, concrete floors, gypsum wall board (GWB) ceiling lids, closed cell spray foam, and roofing underlayment.

Materials installed as air barriers must have an air permeance of less than 0.004 cfm/ft² @ 75 Pa

Systems installed with air barrier materials must have an air permeance of less than 0.04 cfm/ft² @ 75 Pa

Buildings installed with air barrier systems must have a permeance of less than 0.40 cfm/ft² @ 75 Pa (0.30 cfm/ft² - SEC; 0.25 cfm/ft² - Enhanced Efficiency Option)

AIR BARRIER REQUIRMENTS WSEC ENERGY CODE UPDATE

Building Test Provision

2015 WSEC

- Target = 0.4 cfm per SF
- SF = Square foot area of the air barrier boundary
- Test pressure = 0.3" w.g. or 75 pascals
- Must perform test but meeting the target is optional.
- Follow-up leak-sealing efforts required if building doesn't pass.
- Re-testing not required.

2015 SEC Provisions

Target = 0.3 cfm per SF

2018 WSEC

- Target = 0.25 cfm per SF
- Passing Target = 0.4 cfm per SF
- All commercial buildings will be required to pass!

What if the building fails the building enclosure test?

2015 WSEC

- Target = 0.25 cfm per SF
- Building must pass

2018 WSEC

- Target = 0.17 cfm per SF
- Accounts for one credit (or two for Group R-2)
- Building must pass

Image courtery of Neudorfer Engineers

Example of a 34-story high rise that had a tested leakage rate of 0.20 cfm/sf!

- Per the 2018 WSEC, if the building fails the test...
 - Conduct inspection of all air barrier elements.
 - Document identified sources of air leakage and corrective action taken to remedy.
 - Re-test until the building passes the 0.4 cfm/SF required maximum leakage rate.
 - Provide test results to the code official.

Air Barrier 101

The **<u>GOLDEN</u>** rule:

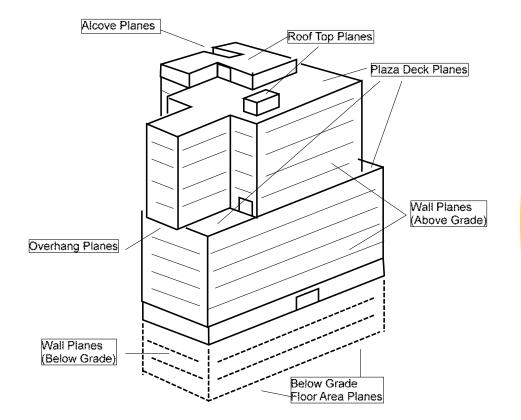
The air barrier must be continuous. All air barrier materials must interface in such a way that the boundary is continuous along all 6-planes of the building.

Things to consider:

Penetrations Through the Air Barrier – Windows, Doors, HVAC, Electrical Outlets

Surface Mounted Materials – Thermal Bridge, Material Compatibility, Durability

Building Joints – Structural Movement, Sealant Dependent Details, Wear and Tear


AIR BARRIER CONSTRUCTION -SECTION C402.5.1.1

- Continuous air barrier required
- Air barrier placement allowed:
 - Inside of building envelope
 - Outside of building envelope
 - Located within assemblies composing envelope OR
 - Any combination thereof
- Continuous for all assemblies part of the thermal envelope and across joints and assemblies
- Joints and seams sealed including sealing transitions in places and changes in materials, securely installed in or on the joint for its entire length to not dislodge, loosen or otherwise impair its ability to resist positive and negative pressure from wind, stack effect and mechanical ventilation

AIR BARRIER CONSTRUCTION – SECTION C402.5.1.1

- Penetrations of air barrier and air leakage paths to be caulked, gasketed or otherwise sealed in a manner compatible with construction materials and location (sealing to allow for expansion, contraction and mechanical vibration)
- Joints and seals
 - Sealed in same manner or taped
- Sealing of concealed fire sprinklers where required in a manner recommended by manufacturer
 - Caulking or other adhesive sealants should not be used to fill voids between fire sprinkler cover plates and walls, or ceilings
- Recessed lighting to comply with C402.5.8
- Where similar objects are installed that penetrate the air barrier, make provisions to maintain the air barrier's integrity

PERMIT SET

Air Barrier Enclosure Area (ABEA): Floor plan + Roof plan (sim.) + All Vertical Planes = ABEA

Example: 100,000 + 100,000 + 25,298 = 225,298 ft²

Allowable Leakage Rate = 0.40 cfm / ft²

225,298 x 0.40 = 90,119 allowable cfm 90,119 x .0007449 = 67 ft. sq. (8' x 8')

WHERE TO LOCATE THE WHOLE BUILDING AIR TEST IN THE PROJECT SPECIFICATIONS

Specification Section 01 41 00 – Air Barrier Test

Specification Section 07 27 26 – Fluid-Applied / Sheet-applied Air and Vapor Barriers

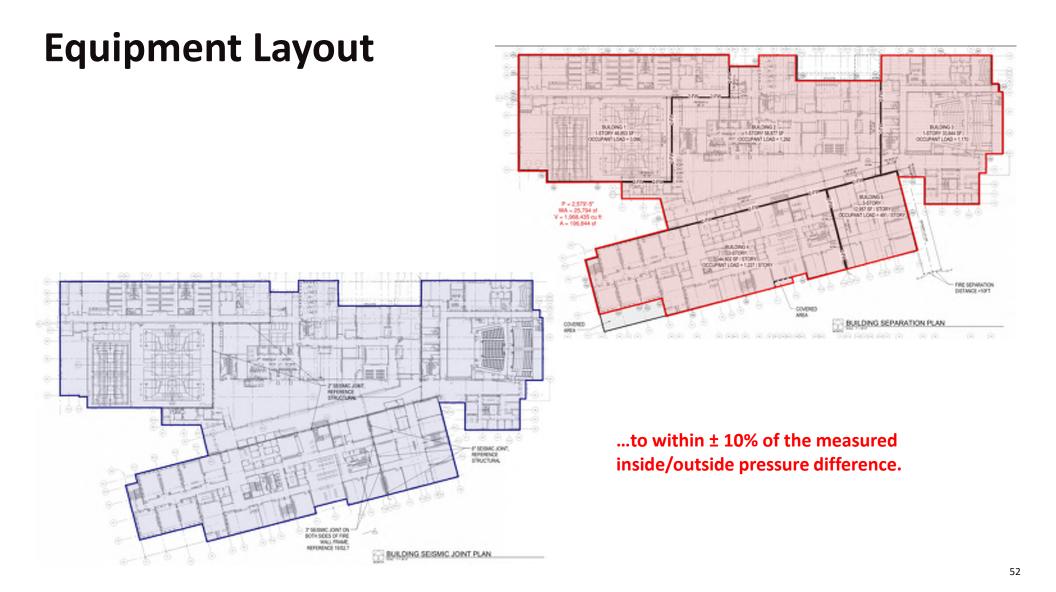
Extra Credit:

G-sheet mention of the 2015 Energy Code (State of Washington or City of Seattle)

EQUIPMENT – BLOWER DOORS

Equipment Layout

The importance of correct and accurate equipment placement:


...to within ± 10% of the measured inside/outside pressure difference.

- Fan placement
 - In a well designed and constructed building, fans can be grouped close together in one section of the building and still achieve pressure equalization throughout the entire building.
 - In a building that has significant air leakage, fans will need to separated and staged in multiple area throughout the building to overcome the effects of air loss.
 - Example: In a 6-story multi-family building, six (6) fans were set-up in the main entry vestibule.
 Preliminary pressure verification found a significant pressure drop at the 4th floor. The single stairwell in the building was a choke point. We had to re-install 3 fans in the 6th Floor stairwell (roof access) door to achieve pressure equalization.

Equipment Layout

...to within \pm 10% of the measured inside/outside pressure difference.

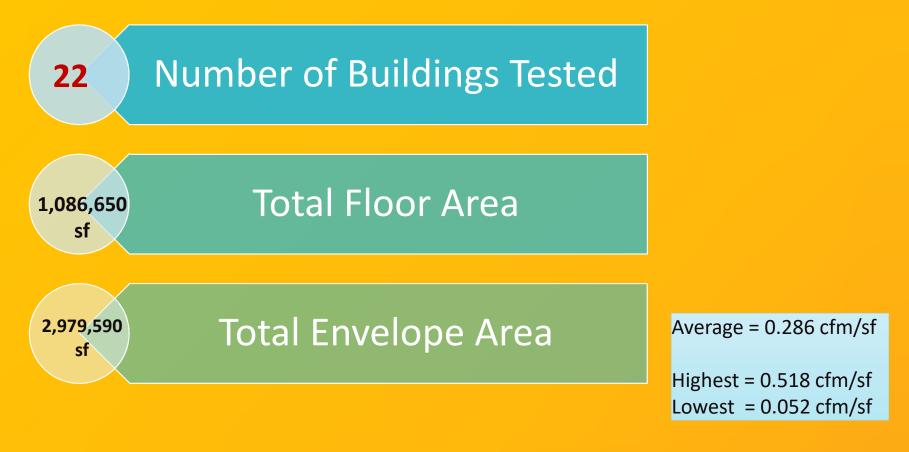
EQUIPMENT – LAYOUT

...to within \pm 10% of the measured inside/outside pressure difference.

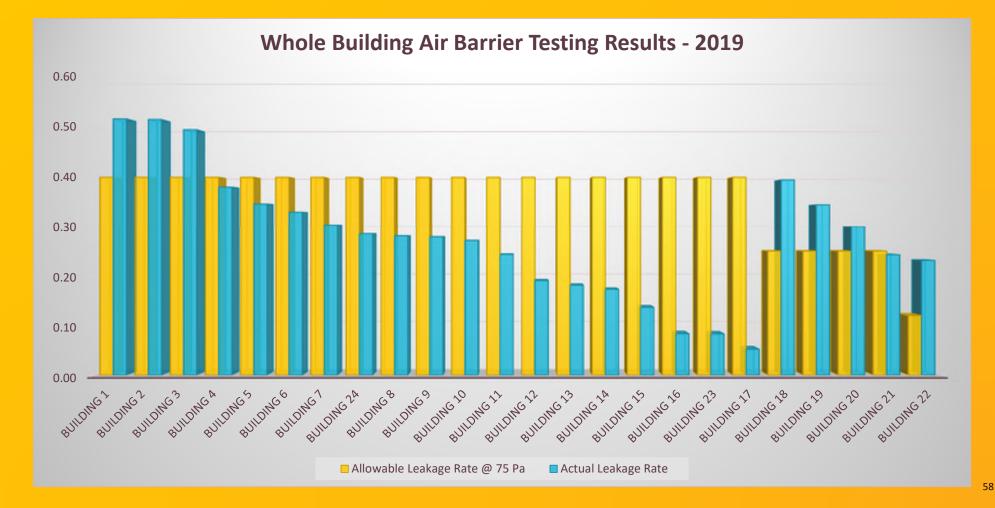
DIAGNOSTIC TOOLS

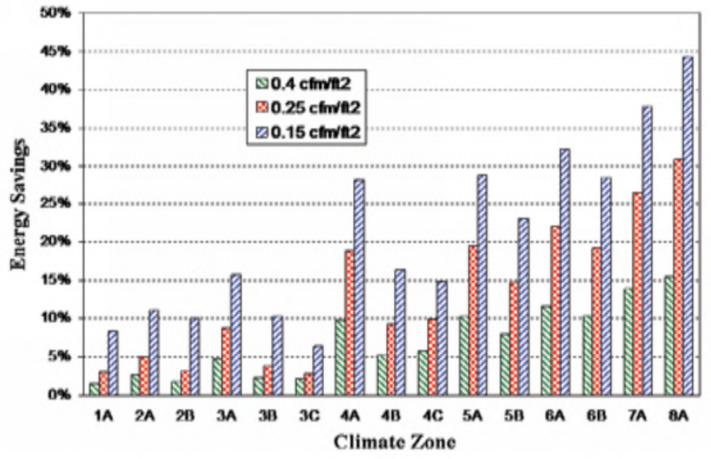


<u>DO's:</u>


- Provide Air Barrier Boundary Drawings in your Documents
 - Clearly define your design intent. You do not want test results that do not accurately account for the air barrier boundary.
- Know the air barrier area and insist the testing firm use it for the test
 - The air barrier area is crucial in determining the flow allowance and the test/fail result.
- Ask to review the testing layout prior to the test
 - Verify proper set-up. Does the layout make sense? Will the results be based on the code requirements?
- Plan to be present during the test
 - Verify the test is performed as planned, and if not, know why.

DO NOT:


- Accept passing test results EXTRAPOLATED below 60Pa without an explanation
 - Extrapolation is a guess based on collected data at lower pressures. It does not account for the possibility of failure under higher pressures.
- Base your test firm selections on price alone
 - There are plenty of firms that say they can test your building, but are they doing it correctly? The Owner can not afford to have a test report thrown out by an experienced Code Official.


SEATTLE AIR-BARRIER PERFORMANCE – OUR OBSERVATIONS

SEATTLE AIR-BARRIER PERFORMANCE – OUR OBSERVATIONS

MATERIALS, ASSEMBLIES, AND THE WHOLE BUILDING

B9Cx - MGAC - 09 May 2017

Credit: Journal of Building Enclosure Design Summer 2011 "Improvement of Air Tightness in U.S. Army Buildings" pgs. 11-13

UPCOMING CHANGES TO ASHRAE 90.1-2019 AND BEYOND

- An Informative Appendix on Commissioning Requirements
 - Provides guidance on best practices for stand-alone functional performance testing (FPT) and commissioning processes (including FPT) that relate to Sections 4.2.5, 5.9, 6.9, 7.9, 8.9, 9.9, 10.9, 11.2(d), and G1.21(c) of Standard 90.1.
- Envelope Backstop Alternative methods of complying to envelope requirements
- Thermal Bridging Requirements (Could be delayed beyond 2019)

Prescriptive structural/insulation detailing solutions

- Roof-wall intersections
- Wall-floor intersections
- Fenestration-wall intersection
- Shading devices/fins/awnings
- Large elements penetrating envelope
- Simplified trade-off of thermal bridging details for more insulation

TYPES OF THERMAL BRIDGES ADDRESSED BY THE STANDARD

- Clear-field thermal bridge
- Linear thermal bridge
- Point thermal bridge

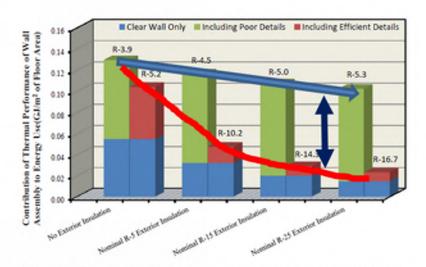
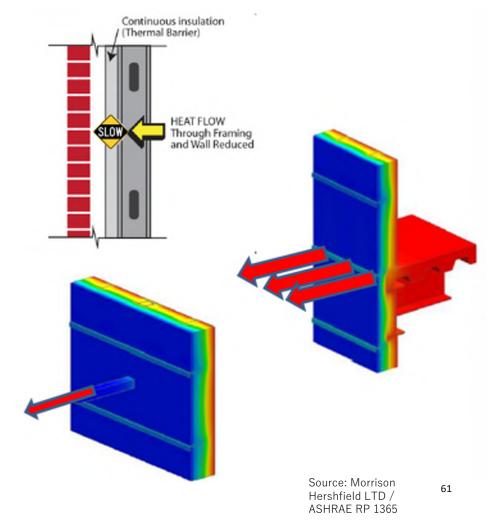
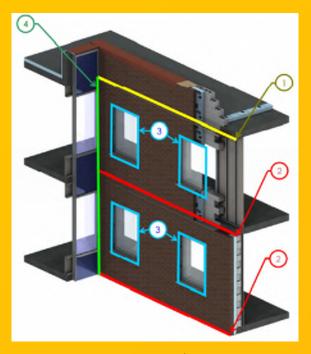




Figure 4.7: Additional building energy use based on thermal performance of the building wall assembly for varying amounts of nominal exterior insulation for a mid-rise MURB in Edmonton (overall assembly thermal resistance in ft².*F·h/Btu also given)

CALCULATIONS TO ACCOUNT FOR POINT & LINEAR THERMAL BRIDGES

Source: BC Hydro BETB Guide / Morrison Hershfield LTD

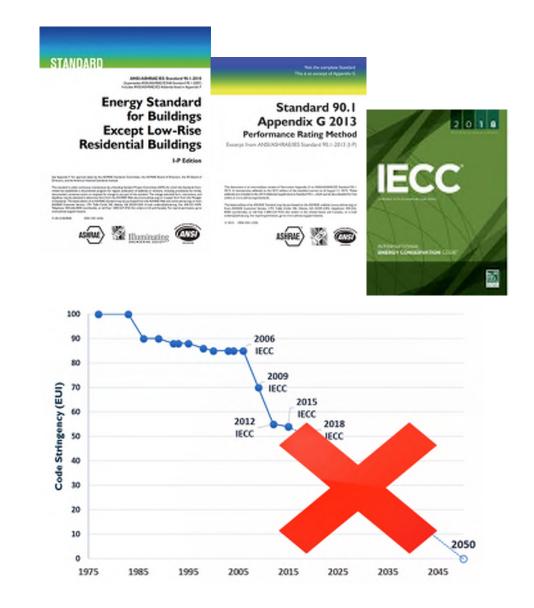
$\mathbf{Q} = \left[\sum \left(\mathbf{U}_i \cdot \mathbf{A}_i \right) + \sum \left(\psi_j \cdot \mathbf{L}_j \right) + \sum \left(\chi_{k} \cdot \mathbf{n}_k \right) \right] \mathbf{x} \, \Delta \mathbf{T}$

where:

- **Q** = heat transfer through envelope by conduction (static)
- U_i = U-factor for assembly type i
- A_i = Total surface area of assembly type i
- Ψ_i = Psi-factor for linear thermal bridge type j
- L_i = Total length of linear thermal bridge type j
- χ_k = Chi-factor for point thermal bridge type k
- n_k = number of point thermal bridges of type k

$$\boldsymbol{U}_{adj} = \frac{\sum (\boldsymbol{\Psi} \cdot \boldsymbol{L}) + \sum (\boldsymbol{\chi} \cdot \boldsymbol{n})}{A_{Total}} + \boldsymbol{U}_{o}$$

where:


U_{adi} = adjusted U-factor for use in "tricking" simulation model

to account for thermal bridges that may be associated with but not "in" the assembly.

U_o = clear-field U-factor for the assembly being adjusted

SUMMARY

- Energy Codes are becoming stringent and more complex
- Commissioning and whole building air-barrier testing will become mainstream in all projects
- Performance-based Compliance and Energy Modeling will be needed in all high-performance projects
- Lots of new opportunities for modeling, analysis, testing, verification and design reviews.

Krishnan Gowri, Ph.D.

0

253-304-4579

Krishnan.Gowri@Intertek.com

intertek.com/building

Michael Nelson

253.243.5554

Michael.nelson@intertek.com

Total Quality. Assured.